
Caribbean/Q: A Massively Multi-Agent Platform with Scenario Description
Language

Yuu Nakajima
Kyoto University,

Dept. of Social Informatics
nkjm@ai.soc.i.kyoto-u.ac.jp

Hironori Shiina
Kyoto University,

Dept. of Social Informatics
shiina@ai.soc.i.kyoto-u.ac.jp

Shohei Yamane
Kyoto University,

Dept. of Social Informatics
yamane@ai.soc.i.kyoto-u.ac.jp

Hirofumi Yamaki
Kyoto University,

Dept. of Social Informatics
yamaki@i.kyoto-u.ac.jp

Toru Ishida
Kyoto University,

Dept. of Social Informatics
ishida@i.kyoto-u.ac.jp

Abstract

Making a truly useful massively multi-agent system is
difficult since the actions of the full ensemble of agents can-
not be controlled by designing just one agent. It is critical
to control all the agents by using protocols that describe
the interaction of agents and the environment in a top-down
approach. We introduce a system that uses interaction pro-
tocol descriptions and has the capability of controlling hun-
dreds of thousands of agents. This makes it feasible to re-
alize a mega-scale navigation system that can assist the in-
habitants of a small city. In developing a massively multi-
agent system, protocol design and agent development need
to be separated to allow specialists to work in concert with
one another while honing the different technologies. As a
platform for mega-scale navigation system, we devise an
architecture for multiagent platforms where the execution
of agents scenario and the implementation of agents are ex-
plicitly separated. This paper also gives the evaluation and
an application example using the platform.

1. Introduction

The spread of mobile terminals like cellular phones and
PDAs, and positioning systems like GPS, will realize a
ubiquitous environment for city-dwellers. Using this en-
vironment, we can build a large-scale navigation system
(mega-scale navigation system) like traffic control or evacu-
ation navigation for any particular city [4]. Current systems
simply broadcast the same instructions over a large area, but
what is needed is a system that can provide individualized
instructions to each person.

Our approach to provide personal navigation is to build
a multi-agent system that assigns one Guiding agent to each
human. In this system, an agent can provide personalized
navigation instructions considering the human’s character-
istics, city-supplied evacuation targets, and the surrounding
environment.

Making a massively multi-agent system work properly
is difficult if only single agent is designed. Therefore, it
becomes important to control agents by describing interac-
tion protocols1 predicting agent interaction in a top-down
scenario. In this paper, we describe the construction of a
system that uses protocol descriptions to control hundreds
of thousands of agents in order to realize a mega-scale nav-
igation system targeting city-scale crowds.

To realize a massively multi-agent system platform, we
address the following three issues.

i. Separation of Protocol Design and Agent Develop-
ment
In developing a mega-scale navigation system, experts
of the intended domain (ex. traffic or protection against
disasters) will design the agent interaction protocols
while computer experts will develop the agent system.
If the agent platform forces the agent system devel-
opers to integrate agent internal models with protocol
descriptions, the former must be significantly revised,
which is very expensive, if the protocol descriptions
are changed. This shows that any truly practical devel-
opment environment must separate protocol descrip-
tions from the agent internal models.

ii. Dynamic Protocol Switching
1In this paper, “Protocol” refers to the interactions permitted between

agents and the external world (other agents and the environment).



Figure 1. Both Protocol and Internal Model
are Implemented in Each Agent

Figure 2. External Protocol Interpreter Con-
trols Agent System

In large-scale social systems, each agent faces a vari-
ety of situations. A single protocol description to deal
with all such situations may become large and com-
plex. Instead, our architecture allows experimenters
to dynamically switch protocol descriptions given to
agents corresponding to the changing situations.

iii. Scalability
Most of existing protocol processing systems and
agent systems are not designed with the management
of a large number of agents in mind. To manage large-
scale social systems, systems have to control a large
number of agents that model human behaviors. We
achieve the scalability by applying large-scale agent
server which is recently developed and works on event
driven object models.

2. Architecture

There are two possible types for the mechanism to con-
trol agents by giving designed protocols. One of them

Figure 3. Protocol Interpreter on Agent Sys-
tem Controls Agent

is the one shown in Figure 1, where protocol description
and agent internal model are implemented together into an
agent. The other is shown in Figure 2, where an external
protocol processing system controls agent internal model.

In the approach shown in Figure 1, the developer of the
agent system implements an agent by integrating the proto-
col description, which is given in an inexecutable language
such as AgentUML[7], and the agent internal model. In this
method where both the protocol description and the agent
internal model are implemented in a single agent, the agent
implementer has to absorb the knowledge of domain experts
first, and then reflects their ideas to agent implementation,
which is not efficient. Also, it is hard to switch the protocol
according to the changing situations during the operation.

In contrast, the approach shown in Figure 2, the protocol
description is given in an executable protocol description
language, and an external protocol interpreter interprets it
and controls the agent internal model. In this approach, do-
main experts can directly design protocols without consid-
ering the internal implementation of agents. Thus, domain
experts and agent implementerscan independently develop
a multiagent system.

In this research, we propose an architecture shown in
Figure 3 that extends the one given Figure 2 by implement-
ing both protocol interpreters and agent internal models on
a large-scale agent server to achieve scalability. A large-
scale agent server can manage hundred-thousands of agents
by keeping agents as objects and by allocating threads to
those objects appropriately. As an example of such large-
scale agent servers, we describe Caribbean[8] in the follow-
ing section.

Since the protocol description and the agent development
are separated in this approach as in Figure 2, protocol de-
signers can change protocols without knowing the detail of
agent implementation. The protocol interpreter requests the
execution of sensing and actions in the protocol given to
agents and receives the result, which enables the dynamic
switching of protocols given to agents.



MACE3J[1], MadKit[2], Robocup Rescue[5] are also
large scale multiagent platforms. MACE3J is a general
multi agent platform that realizes scalability because it can
perform in distributed environment. Madkit is aimed at in-
tegrating a specific social model as a foundation for system
design. Robocup Rescue is a platform for the simulation of
large scale disaster relief. The platform gets efficiency by
dedicates to that.

In these platforms, protocol description and agent devel-
opment are not separated explicitly. In contrast, our archi-
tecture is aimed at realizing the separation of the protocol
design and agent the development, which enables the ex-
perts of different domains to cooperatively and efficiently
develop large-scale multiagent system.

3. Fundamental Technologies

We have combined a scenario description languageQ[3]
and a large-scale agent server Caribbean to build a platform
for large-scale multiagent system. Below, we describe the
two technologies.

3.1. Scenario Description Language Q

Q is an interaction design language that describes how
an agent should behave and interact with its environment
including humans and other agents. For details see [3]. In
modeling human actions, it has been shown that theQ ap-
proach, describing the interaction protocol as a scenario, is
more effective than alternative agent description methods
that simply describe the appearance of a human being [6].

The features of theQ are summarized as follows.

• Cues and Actions
An event that triggers interaction is called a cue. Cues
are used to request agents to observe their environ-
ment. A cue has no impact on the external world. Cues
keep waiting for the event specified until the observa-
tion is completed successfully. Actions, on the other
hand, are used to request agents to change their envi-
ronment. Cue descriptions begin with “?” while action
descriptions begin with “!”.

• Scenarios
Guarded commands are introduced for the case
wherein we need to observe multiple cues in parallel.
A guarded command combines cues and actions. Af-
ter one of the cues becomes true, the corresponding
action is performed. A scenario is used for describ-
ing state transitions, where each state is defined as a
guarded command.

• Agents
An agent is defined by a scenario that specifies what
the agent is to do.

3.2. Caribbean Agent Server

Caribbean is a large-scale agent server implemented in
Java language.

Caribbean manages agents as objects. There are two
types of objects in Caribbean, service objects and event
driven objects. Objects in Caribbean communicate with
each other using Caribbean messaging facility. Service ob-
jects can be run at any time and are used for implement-
ing such modules as databases with common information
which are frequently accessed. In contrast, event driven ob-
jects runs only when they receive messages from other ob-
jects. Caribbean scheduler allocates threads to event driven
objects based on messages. Usual modules in a system on
Caribbean are implemented as this type of objects.

According to our preliminary experiments, if threads are
allocated to all the objects to run them concurrently, only
up to one thousand objects can be run. Instead, Caribbean
enables executing objects of large number by adequately se-
lecting event driven objects to be allocated threads to.

Caribbean limits the number of objects in the memory
and controls the consumption of the memory, by swapping
objects between the memory the auxiliary store. When the
number of objects on memory exceeds a limit, Caribbean
moves objects that are not processing messages to the aux-
iliary store. When objects in the auxiliary store receive
messages from other objects, Caribbean swaps them into
the memory to process the messages. By performing these
swapping efficiently, Caribbean manages a large number of
agents that cannot be stored in the system memory at once.

4. Implementation

4.1. Structure of Caribbean/Q

By applying the proposed architecture, we build a scal-
able multiagent platform that realizes the separation of
protocol design and agent development and the dynamic
switching of scenarios. We developed a large-scale mul-
tiagent platform, Caribbean/Q, by combining scenario de-
scription languageQ and large-scale agent server Caribbean
based of the proposed architecture. Figure 4 depicts the out-
line of the system. AQ scenario describes an interaction
protocol between an agent and the outer world.

The conventional processor ofQ language, which is im-
plemented in Scheme, cannot control enough agents to real-
ize massive navigation. Therefore, it is necessary to develop
the new processor ofQ language which is available on the
agent server Caribbean.

Q language is an extension of Scheme, and aQ sce-
nario has been interpreted by the processor implemented
in Scheme. In order to executeQ scenarios on Caribbean,
which is implemented in Java, the approach is translating



Figure 4. Overview of Caribbean/ Q

Q scenarios into data structure of Java. This approach gets
it easy to handle scenarios on the agent server, and realizes
quick execution of scenarios. The translator which trans-
lates aQ scenario into a syntax tree object in Java is im-
plemented in Scheme. This translation can be realized by
parsing aQ scenario because syntax of Scheme, which is
Q’s mother language, is similar to data structure.

In Caribbean/Q, the Q translator takes aQ scenario as
input, and converts it to a syntax tree that is read by the state
machine object in Caribbean. The state machine executes
the converted syntax tree stepwise, by which the protocol
given inQ is executed. The scalability of Caribbean is thus
exploited by importing theQ processing system as event
driven object in Caribbean.

4.2. Execution of Scenario

Since the conventional processor ofQ language, which
is implemented in Scheme, allocates one thread to one
scenario interpretation continuously, the number of con-
trolled agents is limited. Therefore, it is impossible to con-
trol agents on an agent server, which are much more than
threads, with this processor. The proposed method in this
research is to utilize event-driven mechanism of the agent
server for scenario processing. This method realizes con-
trol of many agents on the agent server with scenarios.

Both the protocol interpreter and the agent internal mod-
els are implemented as event driven objects in Caribbean.
Each agent internal model object has one corresponding
state machine object. When switching scenarios, a new state
machine object that corresponds to the new scenario is gen-
erated and is allocated to the agent.

When the request for the execution of a scenario is given
to a state machine object, message exchanges begin be-
tween the object and the corresponding agent internal model

object. First, the state machine object sends a request as
a Caribbean message for the execution of cues or actions
to the agent internal model object as a Caribbean message.
Then, the agent internal model object executes the indi-
cated cues or actions against the environment, and sends
a Caribbean message to notify the state machine object of
the result. Finally, the state machine object that receives
the result reads the syntax tree, converted byQ translator,
and makes a transition to the next state. By iterating this
process, the given scenario is executed.

5. Evaluation

In this section, the performance of Caribbean/Q system
is evaluated. We compare the performance of the orig-
inal Caribbean system and that of the Caribbean/Q sys-
tem to evaluate the trade off between the two merits of
Caribbean/Q (the separation of protocol description and
agent development, and the dynamic switching of pro-
tocols) and system performance. Also, by comparing
Caribbean/Q and an implementation where the originalQ
system is externally attached to control Caribbean, we val-
idate the improvement in scalability. The computer used
in the following experiment has Xeon 3.06GHz dual pro-
cessors and 4GB memory, which is enough to keep all the
Caribbean objects on memory.

To test the performance that Caribbean/Q allocates sce-
narios to agents, the following simple scenarios2 with sim-
ple cues and actions are used.¶ ³

(defscenario scenario ()
(scene1

((?receive) (!send) (go scene1))))

µ ´
In this experiment, action counters are used to confirm

that all the agents execute an action before they go to the
next states, in order to guarantee that each agent executes
the uniform number of cues and actions and to avoid situa-
tions where only a small set of agents run.

The chart in Figure 5 shows the relationship between the
number of agents and the processing time for the agents to
execute 1,000,000 actions.

From Figure 5, the performance of Caribbean/Q is ap-
proximately 1/4 of that of original Caribbean. This is be-
cause one action of an agent in original Caribbean corre-
sponds to one Caribbean message and that in Caribbean/Q
corresponds to four messages; the request for the observa-

2In complex scenarios, the number of states and the number of parallel
observed cues increases. The increase in the number of states does not
affect the throughput, since a state transition corresponds to a single edge
in the syntax tree. The increase in the number of parallel observed cues
does not affect the performance either, since it only increases the number
of patterns that shows the names of cues returned from agent internal model
objects.



Figure 5. Evaluation Result of Platform

tion of a cue its result, the request for the execution of an
action, and its result.3

The original Caribbean system requires that the data and
the functions of an agent are implemented to a single event
driven object. In contrast, the implementation of an agent in
Caribbean/Q is divided into two objects, a state machine ob-
ject and an agent internal model object, to separate protocol
description and agent internal model and to switch protocols
dynamically. This demonstrates that there is a trade-off be-
tween the two merits in developing multiagent systems and
the performance.

As shown in Figure 5, the management of more than
thousand agents failed in the implementation where the
original Q interpreter is just attached externally to the orig-
inal Caribbean system. In contrast, Caribbean/Q success-
fully managed 1,000,000 agents. The increase in the num-
ber of agents does not affect the time to process an action,
which means the time to process the whole system is pro-
portional only to the cues and the actions executed.

6. Application Example

We produced a large-scale evacuation navigation sys-
tem for confirming the effectiveness of Caribbean/Q. The
system commander assigns an evacuation destination and
evacuation direction through the control interface shown in
Fig. 7. The Commander issues high level instructions to
the Guiding agents using a map and the Guiding agents as-
signed to the evacuees on a one-to-one basis provide indi-
vidual navigation instructions. Guiding agents give infor-
mation to evacuees via GPS-capable cellular phones.

In a guidance system which uses ubiquitous information
infrastructure on a city, the system can acquire information

3In this example, the ratio of the overhead to the execution time of cues
and actions is estimated relatively large, because simple cues and actions
are used. In real applications, cues and actions are more complex, and thus
the ratio will be smaller.

Figure 6. Overview of Large-Scale Evacua-
tion Navigation System

of each individual user in real time. However, the quan-
tity of the information becomes enormous. There occurs a
problem that a human who control system cannot handle all
the information. Our approach is that a human gives rough
navigation to agents and the agents give precise navigation
to each person. We aim at realizing a mega scale navigation
system using GPS-capable cellular phones.

Figure 6 depicts the structure of the system. Important
modules are described as below.

6.1. Control interface

The controller instructs the guiding agents the direction
to evacuate through the control interface. In the interface,
the map of a wide area is displayed so thatthe controller
view the current locations of evacuees. The controller can
also assign evacuation sites, set places ofshelters, and record
the information about dangers such as fires.

On control interface, the distribution of people in the real
space is reproduced on the virtual space with human figures
based on positions of people acquired with sensors. The
state of the virtual space is displayed on the monitor of the
control center, so that the controller can grasp how people is
moving in the real world widely through the bird-eye view
of the virtual space. In addition, the controller can instruct
particular people by handling human figures on the screen.
The system notifies the people of the instructions using their
registered phone numbers or e-mail addresses. Due to this
interface, it is possible to grasp situations of all people with
global view and provide local navigation with consideration
of global coordination.

6.2. Guiding agents

Guiding agents guide evacuees in the disaster area. A
guiding agent instructs the corresponding evacuee. These



Figure 7. Screenshot of Large-Scale Evacua-
tion Navigation System

functions are implemented as functions of guiding agents.
The behavior of the evacuee agent is given as theQ sce-
nario.

Receiving location information from a user’s GPS mo-
bile phone, an agent sends a surrounding map according to
the user’s location. On this map, locations of places with
damage such as fires, a location of a shelter to evacuate to,
and a direction to head toward are described. The user sends
his/her location and gets a new map when he/she needs.

An agent is instructed on a direction of evacuation by the
control center. The agent retrieves shelters around the user,
and selects a destination according to the ordered direction
and distance between the user and each shelter. If the desti-
nation is changed by instructions, the agent notifies the user.
If there is a person who needs rescue, his/her place is given
to neighbor evacuees.

In this prototype, evacuee agents are given a simple uni-
form scenario. In future works, more complex navigation is
provided by giving more variety of scenarios. Such scenar-
ios will include ones that reflect social roles, such as firemen
and police, individual contexts, such as injury, and so on.

7. Conclusion

In this paper, we have proposed an architecture for large-
scale multiagent platform. We implemented a system that
based on this architecture, evaluated it, and gave a sample
application.

The problems we tackled in this work is as follows. The
one is separation of protocol design and agent development.
The architecture realizes the separation of protocol design
and agent development, which enables the experts of differ-
ent domains to cooperatively and efficiently develop large-
scale multiagent system. The second is dynamic switch-
ing of protocols. By separating protocol processing system
and agent internal models, experimenters can easily switch
protocols according to the changing situations during oper-
ation. The third is scalability. By implementing both proto-
col processing system and agent internal models in a large-

scale agent server, scalability of the system is improved.
The result of experiments shows that the Caribbean/Q

system successfully manages 1,000,000 agents. However,
to build more practical system, the speeding up is still nec-
essary. To achieve it, technologies to distribute among mul-
tiple computers and to perform parallel is necessary. Be-
sides the issue, we plan to study visualization methods of
large-scale navigation system.

Acknowledgment

We would like to thank Mr. Gaku Yamamoto and Mr.
Hideki Tai at IBM Japan Tokyo Research Laboratory, and
Mr. Akinari Yamamoto at Mathematical Systems Inc.. This
work was supported by a JSPS Grant-in-Aid for Scientific
Research (18200009), a Grant-in-Aid for JSPS Fellows and
the Strategic Information and Communications R&D Pro-
motion Programme.

References

[1] L. Gasser and K. Kakugawa. Mace3j: fast flexible distributed
simulation of large, large-grain multi-agent systems. InAA-
MAS ’02: Proceedings of the first international joint confer-
ence on Autonomous agents and multiagent systems, pages
745–752, New York, NY, USA, 2002. ACM Press.

[2] O. Gutknecht and J. Ferber. The madkit agent platform ar-
chitecture. InInfrastructure for Agents, Multi-Agent Sys-
tems, and Scalable Multi-Agent Systems: InternationalWork-
shop on Infrastructure for Scalable Multi-Agent Systems, Lec-
ture Notes in Computer Science, volume 1887, pages 48–55.
Springer, June 3-7 2001.

[3] T. Ishida. Q: A scenario description language for interactive
agents.Computer, 35(11):42–47, 2002.

[4] T. Ishida. Society-centered design for socially embedded mul-
tiagent systems. InInternational Workshop on Cooperative
Information Agents (CIA-04), Lecture Notes in Computer Sci-
ence, volume 3191, pages 16–29, 2004.

[5] H. Kitano, S. Tadokor, H. Noda, I. Matsubara, T. Takahasi,
A. Shinjou, and S. Shimada. Robocup rescue: search and
rescue in large-scale disasters as a domain for autonomous
agents research. InProceedings of IEEE Conference on Sys-
tems, Men, and Cybernetics (SMC-99), volume VI, pages
739–743, Tokyo, Oct. 1999.

[6] Y. Murakami, Y. Sugimoto, and T. Ishida. Modeling human
behavior for virtual training systems.In the Proceedings of
the Twentieth National Conference on Artificial Intelligence
(AAAI-05), pages 127–132, 2005.

[7] J. Odell, H. V. D. Parunak, and B. Bauer. Representing agent
interaction protocols in UML. InAOSE, pages 121–140,
2000.

[8] G. Yamamoto and H. Tai. Performance evaluation of an
agent server capable of hosting large numbers of agents. In
AGENTS-01, pages 363–369, New York, NY, USA, 2001.
ACM Press.


