
Simulator Integration Platform for City
Simulations

Yuu Nakajima1 and Hiromitsu Hattori1

Department of Social Informatics, Kyoto University
Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan

{nkjm, hatto}@i.kyoto-u.ac.jp
WWW home page:http://users/˜iekeland/web/welcome.html

Abstract. Multiagent-based simulations are regarded as an useful tech-
nology for analyzing complex social systems and have been applied to
various problems. Tackling the problems of a city involves various levels
of abstraction and various target domains. Different types of human be-
haviors are studied separately by specialists in their respective domains.
We believe that we need to integrate simulators that offer different levels
of abstraction and cover various target domains. This paper introduces
the architecture of a simulator integration platform and demonstrates
the capability of the platform in that domains of city traffic and city
electricity.

1 Introduction

Multiagent-based simulations (MABS) are regarded as the most powerful tech-
nology for analyzing complex social phenomena. Actors, who have various char-
acteristics, play out their daily lives autonomously, and the summation of their
actions produces social phenomena. The MABS approach, which observes inter-
action among diverse agents that model individual humans, is suitable for social
simulations[4]. MABS are being applied various domains, e.g. traffic engineering,
disaster management, sociology[1, 6, 3].

Vehicular traffic is one of the most complex systems in modern society. Com-
prehensive traffic simulations must involve various levels of abstraction and var-
ious target domains.

In the traffic domain, the behaviors of humans are captured at different levels
of abstraction. For example, traffic simulations of a wide-area road network are
based on highly abstract models such as traffic flow models[2, 10], while those of
a road are based on less abstract models such as driving behavior model[5, 7].
Few simulators can deal with different levels of abstraction.

Additionally, traffic is related to various other city problems: evacuations
after a disaster or enhancement of the spread of a flu pandemic. Traffic and
other city problems impact each other, but there is no simulation platform that
can combine multiple (different) simulators.

This paper has two goals:

II

1. Integration of simulators having different abstraction level Interpreting the
activities of a city involves different levels of abstraction. For city traffic sim-
ulations, the movements of people are expressed by highly abstract models
such as flow over a road network. For driving simulations at the level of indi-
vidual roads, people are described in more specificity as actors who observe
the environment and then decide their action. Integrating simulators with
different levels of abstraction is the first issue. Our solution is the layered
architecture, where each simulator shares the data of contact points and a
high level simulator calls a low level simulator when it needs precise details
of a particular phenomenon.

2. Integration of different domain simulators
Activities in a city are interpreted as different domains. In the traffic domain,
people traveling to a hospital are interpreted as vehicle movements; in the
flu pandemic domain, they are interpreted as possible contacts of infected
and uninfected people. Since these two domains are only weakly related, we
propose an external simulator integration architecture that loosely connects
different simulators by establishing mutual contact points through which
messages are passed.

The remainder of this paper is as follows. Section 2 describes our approach
to designing the simulator integration platform. Section 3 shows how to com-
bine simulators that have different levels of abstraction. Section 4 describes the
integration of simulators in different domains: traffic simulation and electricity
simulation. Section 5 provides an analysis of the platform’s performance and
Section 6 places the proposed method within extant research.

2 Architecture

We classify the difference between simulators from two viewpoints: abstraction
and target domain. First, the simulator components, the parts of the archi-
tecture, are described. Second, the layered architecture for simulators having
different abstraction level is explained. Last, the external simulator integration
architecture for different domain simulators.

2.1 Simulator Components

This architecture can handle multiple simulators, each of which captures a spe-
cialized aspect of city phenomena. Each simulator is built as an independent
system module (Fig. 1, Fig. 2) and includes a simulation controller. Each simu-
lator has its own time step because its components are executed independently.

The simulation controller requests the simulation model to calculate the state
of the next step. The simulation models writes its estimate of the next time
step. Simulation models consist of agent models to capture human behavior and
environmental models to capture city environments.

The points connection among simulators are established by the event man-
agers initiating and responding to event messages. When an event that involves

III

Event

Manager

High Layer Simulator

Simulation

Model

Simulation

Environment

Result of

Action

Environment

Simulation

Controller

Low Layer Simulator

Simulation

Model

Simulation

Controller

Event

Manager

Simulation

Environment

Shared

Data

Control

Message

Event
Result of

Event

Event Result of

Event

Control

Message

Result of

Action

Environment

Time Event

Fig. 1. Layer based integration architecture

another simulator occurs, the event is sent to the event manager of the appro-
priate simulator.

2.2 Layered Integration Architecture

Activities of citizens are interpreted on different levels of abstraction when they
are modeled in simulations. For example, a high level of abstraction is used to
examine gross movements, i.e. the morning movement of people from the suburbs
into the city center. A low level of abstraction would be used to examine crowd
movement in a shopping area.

Simulators that have different abstraction levels deal with the same phe-
nomenon from different aspects. Because of this, these simulators are strongly
linked to each other. We propose here a layered architecture where the higher
level layer controls the lower layer and the simulators are connected by data
exchanges (Fig. 1).

The simulation model in the higher level layer opens an extensible point
as events type for replacing its simulation model to less abstracted simulation
model. The simulator of high level abstraction sends the event to the event man-
ager when the simulation model requires more precise calculation. The simula-
tion controller in the higher level simulation sends a request to the appropriate
lower level simulator. The data of each simulation environment is accumulated in

IV

EventManager
Simulator SimulationModel SimulationEnvironment

SharedDataEvent
Event

SimulationControllerTimeControlMessage
ControlMessage Result ofEvent

EventManager(Converter)
Integration Simulator IntegratedSimulationModelControlMessageSimulationController(Mediator)

IntegratedSimulationEnvironmentResult ofActionEnvironment

Result ofActionEnvironmentEvent
Result of EventEvent

Fig. 2. External simulator integration architecture

each simulator but the simulation models exchange the data associated through
shared environments.

2.3 External Simulator Integration Architecture

The activities of citizens must be interpreted from different point of views. In the
traffic domain, people rushing to a hospital are interpreted as the movement of
vehicles. In the flu pandemic domain, they are interpreted as contacts between
infected and uninfected people. We describe the integration of different domain
simulators in this section.

Different domain simulations have a weak relationship and share a little data.
Loose coupling is desirable for connecting the various kinds of simulators. We
proposed the external simulator integration approach that uses an external in-
tegration simulator (Fig. 2). The integration simulator manages the simulation
processes and events representing the interaction between target simulators.

The integration simulation controller controls the simulation process of each
simulator. Each simulator receives requests to calculate the next state from the
integration simulation controller and returns the simulation time of the next
state. The integration simulation controller decides the next controller to activate
considering the simulation times of each simulation.

Objective simulators for integration are registered with the event manager
in the integration simulator. The event manager gathers the events that occur
in each simulator and sends them to the appropriate simulators after converting
them into events that can be handled by the simulators.

V

Wide-area Traffic

Simulator

Simulation

Model
Simulation

Environment

Simulation

Controller

Simulation

Model

Simulation

Controller

Simulation

Environment

Local-area Driving

Behavior Simulator

Position on

Road Network

Road

Network

Road

Position on

Road

Queue on

Road

Event

Manager

Enter

Event

Control

Message
Time

Event

Manager

End Running

Event

Fig. 3. Integration wide-area traffic simulator with local-area driving simulator

Each simulator stores a different simulation environment. A simulation en-
vironment can be altered only by its own simulator, while some part can be
read by the other simulators. The connection between simulators is realized by
message passing to decrease the dependency between simulators and protect the
simulation environments from external simulators.

3 Integration of Different Abstraction Level Simulators

To explain our approach, we describe the example of connecting a traffic flow
simulator for wide-area road networks, with a driving behavior simulator for
individual roads. Fig. 3 provides a system diagram of the integration.

Traffic flow simulations using simple agents are popular in the traffic domain.
A simulator with a high level of abstraction uses simple nodes and links to
model road networks. This is suitable when estimating the relation between
traffic demand and traffic flow across wide areas[2]. However, this approach fails
to provide realistic driving behavior simulations on particular roads. This is
because details of the road structure (e.g., the width of lanes) or surrounding
environment including neighboring vehicles cannot be represented, the simulator
fails to consider such local factors.

VI

3.1 Simulator for Global Traffic

The agents in a global traffic simulation select appropriate routes and then pass
along the routes.

The route selection module reads road network data and OD (Origin-Destination)
data of agents. Road network data mainly describes the structure of the road
network while the OD data consists of tuples of the starting point and the des-
tination point of each agent. The agent selects the route that has minimum cost
as identified from map information and the average trip time of each road. A
route plan consists of paths, mode choice, daily activity, and so on.

The route execution module deals with abstracted road networks, not two-
dimensional spaces. The route execution module realizes a queue-based simu-
lator; that is, the road network is represented as a network of FIFO (First-In,
First-Out) queues. Each agent moves over this queue-network between queues
according to its scheduled routing plan given vacancies in the next queue. Traffic
flows in this simulator are composed of agent transfers between queues.

3.2 Simulator for Local Traffic

In the simulator for local traffic, the agent is regarded as a virtual driver and
vehicle. They move in a two-dimensional space rather than the abstract road net-
work. The module reads agent ID and road ID from the simulation environment
and gets details of the road’s structure and surrounding environment including
neighboring vehicles.

3.3 Integrating Simulators of Different Abstraction Levels

The integration of a local road simulator and a wide-area traffic simulator pro-
ceeds as follows (Fig.4).

1. At the initial step, a set of initial plans (routes) is generated based on free
speed travel times generated by the wide-area traffic simulation.

2. The traffic flow simulation is run using the generated plans. On the abstract
road network in the wide-area traffic simulation, agents move from entering
queue to running queue or leaving queue to entering queue.

3. When an agent enters a running queue in the wide-area simulation, an enter-
ing event is generated. The wide-area simulator calls the appropriate local
area simulator and specifies the event.

4. The local driving simulation calculates the driving behavior of the agents in
the specified running queue for the next step. The wide-area traffic simulation
and local driving simulation are jointly aware of all running queues.

5. If an agent in a running queue arrives at the end of the road (queue), the
agent is moved from the running queue to leaving queue in the wide-area
traffic simulation.

6. If the simulation time of the local driving simulation is earlier than that of
the wide-area traffic simulation, the local driving simulator updates the time
and goes to step 4.

7. Step 2 to step 6 must be iterated before the simulation time is at the end.

VII

Enter

Event

Road

Entering

Queue

Wide-area

Traffic

Simulator

Local-area

Driving

Behavior

Simulator

Node

Leaving

Queue

Entering

Queue

Running

Queue

…

Shared

Data

Link

End Running

Event

Fig. 4. Behavior of cars on road network and road

4 Integration of Different Domain Simulators

We connect traffic and electricity-consumption simulators to elucidate our in-
tegration technology. This section explains how these two simulators can be
integrated. Fig. 5 provides a system diagram of the integration.

Previous papers did not try to combine with city traffic simulators and elec-
tricity consumption simulators which were developed independently. However,
the rapid penetration of electric vehicles is forcing the emergence of a loose rela-
tionship. The charging of an electric vehicle is interpreted as vehicle movement
(to the charging station) i.e. traffic domain, and as an electricity consumer i.e.
electricity domain.

4.1 Traffic Simulation

The traffic simulation used in this section is the one described in Section 3.
Traffic agents in the simulation leave their home, go to shopping areas or/and
working places and return home. When the agents arrive/leave a facility, ar-
riving/leaving events are generated and sent to the event manager. The traffic
simulator transmits the arriving/leaving events and destination change events
to the electricity-consumption simulator.

4.2 Electricity-Consumption Simulation

The electricity-consumption simulator has several models: electric consumption,
electric generation, and electric charging of electric appliances connected to fa-
cilities. The simulator calculates electric consumed in each facility step by step.
The electricity simulator transmits connecting/disconnecting events to the traffic
simulator. The electricity-consumption simulator has a time-step of 10 seconds,
which is different from that of the traffic simulator.

VIII

Event

Control

Message

Integrating Simulator

Integrated

Simulation

Model

Control

Message

Simulation

Controller

(Mediator)

Event

Manager

Simulation

Model

Simulation

Environment

Simulation

Controller

Control

Message

Attach / Detach

Electronic Appliance

Charge

Event

Position /

Battery

Leaving /

Arriving

Event

Manager

Traffic

Simulator

Simulation

Model

Simulation

Environment

Simulation

Controller

Control

Leave /

Arrive

Facility

Position

Traffic

Information

Leave /

Arrive

Facility

Event

Electronic

Simulator

Time Time

Attach /

Detach

Electronic

Appliance

Electronic

Appliance

Event

Manager

(Converter)

Control

Message

Simulation

Environment

Position /

Battery

Leave /

Arrive Facility

Event

Charge

Event
Attach E.A.

Event

Leave Facility Event,

Change Destination

Event

Battery Map

Fig. 5. Integration traffic simulator with electronic simulator

4.3 Integration of Traffic Simulation and Electricity Simulation

The integration controller (IC) calls the simulator that has the earlier simula-
tion time. The traffic and electricity-consumption simulations are linked by the
arriving/charging/leaving behavior at charging facilities. IC calculates electric
consumption based on the movement distance of electric vehicle and let the agent
decide whether to go to the charging station or not. IC can match objects (agents
and facilities) in the traffic simulation with those in the electricity-consumption
simulation because the simulator has object ID tables.

IC proceeds as follows.

– When IC receives a “leaving facility” message from the traffic simulator,
it records vehicle ID and facility ID. If the battery reserve of the electric
vehicle is under the threshold that triggers a search for a charging station,
IC locates the charging station nearest the vehicle and sends a destination
change message to the traffic simulator. IC reads and records the battery
reserve of the electric vehicle.

– When IC receives an “arriving at facility” message from the traffic simulator,
it calculates the electricity consumption based on the distance moved, gained
from map information, and updates the battery status of the vehicle. If the
battery reserve is under the threshold that triggers charging, IC sends a
charging event to the electricity-consumption simulator.

– When the vehicle is fully recharged in the electricity-consumption simulator,
the vehicle disconnects and the appropriate event is sent to IC. Additionally

IX

0

20

40

60

80

100

120

0 5000 10000 15000 20000

Computation
Time [min]

Number of Agents

Before
Integraton

After
Integration

Fig. 6. Performance of layer based inte-
gration

0

50

100

150

200

250

0 5000 10000 15000 20000

Computation
Time [min]

Number of Agents

Electricity

Traffic

After
Integration

Fig. 7. Performance of external simulator in-
tegration architecture

when the electric vehicle does not have another activity in the current facility,
it leaves the facility and a “leaving facility” event is sent to IC.

5 Evaluation

5.1 Layerd Integration

We investigate how our layered integration approach affects the computational
overhead time. The computational time of integration simulation (after inte-
gration) and only wide-area simulation (before integration) are compared. We
changed the number of agents from 0 to 20,000.

This evaluation was conducted to estimate the relationship between driving
behavior on local roads and route selection in a wide area network. Each agent
was given two simple driving rules ”If current speed is slower than own desired
speed, accelerate”, ”If there are slow cars in front, pass them if possible”.

In this experiment, we used the road network of Kyoto city; it consisted of
about fifty thousand links and one hundred thousand nodes in a square 20km x
20km area. We generated ODs (origin-destination) pairs randomly and assigned
each to a different traffic agent. Simulation time step for wide-area traffic was
one second and for local traffic it was 0.5 seconds. The simulation was executed
over a 24 hour period.

The computer used in the following experiment had a Core i7 (8 core)
3.02GHz CPU and 12GB of memory. Simulators are executed on JVM (Sun
JRE1.6.0 23(64bit)) on Windows 7 (64bit). The version of MATSim was 0.1.1.
These simulators use only one thread except initialize stage.

Fig. 6 plots the computation time versus the number of agents. As you can
see, the computation time is directly proportional to the number of agents and
no penalty was created by the integration.

X

5.2 External Simulator Integration

We investigate how the external simulator integration architecture affects the
computational time for evaluating the proposed platform. The computational
time of the integrated simulation and those of each simulation (traffic and
electricity-consumption) are compared. We changed the number of agents; from
0 to 20,000.

This simulation scenario assumes that it is conducted to estimate the peak
change in electric consumption caused by the use of electric vehicles. All traffic
agents in the simulation use electric vehicles. Both simulation environments have
the same homes and work locations facilties.

The electricity-consumption simulation had 10 second time steps. The sim-
ulation machine and the traffic simulation used the same specifications as the
simulation described in Section 5.1.

Fig. 7 plots the computation time versus the number of agents. As you can
see, the computation time is directly proportional to the number of agents and
the integration incurred no penalty.

6 Discussion

6.1 Simulation Module Coupling

The most open approach to integrating multiple simulators is to release all in-
terfaces to control the simulators and share all simulation environments. The
integrated simulators would have a high degree of coupling in this case but a
small degree of coupling is desirable for maintenance and reuse of each simulator.

We proposed the layered integration architecture for connecting simulators
having different levels of abstraction. There is a strong relationship between
the simulators because each simulator deals with the same phenomena from a
different point of view. Therefore, our architecture takes the approach that a
higher layer simulator calls the lower layer simulator and both exchange data
via connection point. Our approach to integration has lower cost than the full
integration approach because interactions between simulators are very simple.
However, simulator coupling can be very high.

We proposed integration method by external integration simulator for com-
bining different domain simulators. Each phenomenon in different domain has
weaker relationship than that of different abstraction level simulators. External
simulator integration is suitable because the simulation processes and simulation
environments can keep independent each other. The implementation cost for in-
tegration with the approach is larger than layered approach because interactions
between each simulators becomes complex. However, the couplings of simulators
become low.

The proposed architectures require the creation of simulator components
for controlling the simulation process, interfaces for observing some part of the
simulation environments, and event types. IC can be reused because it also can
be regards as simulator component.

XI

6.2 Related Work

Some platforms that execute in distributed environment have been proposed.
ASON1，Repast2，ZASE[9] are the large-scale multiagent simulation environ-
ment. These platform provide supports for multi-threading and agent data man-
aging and. The platforms help developers to implement simulator which can
be used in parallel and distributed environment. Platforms that reuse existing
simulators have been proposed [8]. The platform integrates Repast and Ascape3

modules as reusing existing simulators.
These simulators are focused on extending scalability of simulators. While on

the proposed architecture is focused on integration of simulators which capture
various phenomena in a city with different abstraction level.

One future direction of this study is to support parallel and distributed en-
vironment for increasing computational resources because precise simulation of
various phenomena in a city required taking much of calculation. We try to
implement a simulation integration platform on the large-scale multiagent sim-
ulation platforms listed in this section.

7 Conclusion

Multiagent simulations are increasingly seen as the most attractive approach to
analyze complex phenomena in a city and are being applied to various domains.
The phenomena captured by the different simulators can be related. There is no
platform that can integrate different simulators so that they can support and
complement each other.

Many simulators have already been developed and they contain knowledge
and technology created from previous work in their respective application areas.
We proposed a simulation platform that can integrate multiple simulators. We
classified the difference in simulators from two viewpoints: abstraction and target
domain. Our contributions are as follows.

1. Integration of simulators having different abstraction level
We proposed a layered architecture wherein each simulator shares data across
contact points and the higher level simulator calls the lower level simulator
when the former needs precise data about a target phenomenon.

2. Integration of different domain simulators
We proposed an architecture based on an external integration simulator con-
troller for loosely connecting different simulators via points for message pass-
ing.

One future direction of this study is to apply the proposed platform to tackle
realistic problems. In particular, as shown in Section 4, we will try to capture
the effect of electric vehicles which behave as actors who in the traffic domain
and as electricity consumers across an entire city.
1 http://cs.gmu.edu/~eclab/projects/mason/
2 http://repast.sourceforge.net/
3 http://ascape.sourceforge.net/

XII

Acknowledgment

This work was supported by Panasonic Corp. - Kyoto University Joint Research:
Crowd Navigation for Region EMS Considering Individual Behaviors and Pref-
erences and Kyoto University Global COE Program: Informatics Education and
Research Center for Knowledge-Circulating Society.

References

1. Balmer, M., Cetin, N., Nagel, K., Raney, B.: Towards truly agent-based traffic
and mobility simulations. In: Proceedings of the 3rd International Conference on
Autonomous Agents and Multiagent Systems (AAMAS-2004). pp. 60–67 (2004)

2. Balmer, M., Meister, K., Rieser, M., Nagel, K., Axhausen, K.W.: Agent-based
simulation of travel demand: Structure and computational performance of matsim-
t. In: Proceedings of the 2nd TRB Conference on Innovations in Travel Modeling.
pp. 1–30 (2008)

3. Deguchi, H., Kanatani, Y., Kaneda, T., Koyama, Y., Ichikawa, M., Tanuma, H.:
Social simulation design for pandemic protection. In: Proceedings of The 1st World
Congress on Social Simulation (WCSS-2006). vol. 1, pp. 21–28 (2006)

4. Epsterin, J., Axtell, R.: Growing Artificial Societies: Social Science from the Bot-
tom Up. MIT Press (1996)

5. Halle, S., Chaib-draa, B.: A collaborative driving system based on multiagent mod-
elling and simulations. Journal of Transportation Research Part C 13, 320–345
(2005)

6. Kitano, H., Tadokor, S., Noda, H., Matsubara, I., Takahasi, T., Shinjou, A., Shi-
mada, S.: Robocup rescue: search and rescue in large-scale disasters as a domain for
autonomous agents research. In: Proceedings of the IEEE Conference on Systems,
Men, and Cybernetics, 1999. vol. VI, pp. 739–743 (1999)

7. Paruchuri, P., Pullalarevu, A.R., Karlapalem, K.: Multi agent simulation of unor-
ganized traffic. In: Proceedings of the 1st International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS-2002). pp. 176–183 (2002)

8. Scerri, D., Hickmott, S., Padgham, L., Drogoul, A.: An Architecture for Modular
Distributed Simulation with Agent-Based Models. In: Proceedings of the 9th In-
ternational Conference on Autonomous Agents and Multiagent Systems (AAMAS-
2010). pp. 541–548 (2010)

9. Yamamoto, G., Tai, H., Mizuta, H.: Consideration on realizing a hundred mil-
lions agent-based simulation. The IEICE transactions on information and systems
(Japanese edetion) 90(9), 2423–2431 (2007-09-01)

10. Yamashita, T., Izumi, K., Kurumatani, K., Nakashima, H.: Smooth traffic flow
with a cooperative car navigation system. In: Proceedings of the 4th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS-2005). pp.
478–485 (2005)

