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Learning from Humans: Agent Modeling
with Individual Human Behaviors
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Abstract—Multiagent-based simulation (MABS) is a very ac-
tive interdisciplinary area bridging multiagent research and
social science. The key technology to conduct realistic MABS
is agent modeling. In order to make agent models realistic, it
seems natural to learn from human behavior in the real world.
The challenge presented in this paper is to obtain an individual
behavior model by using participatory modeling technology in
the traffic domain. We show a methodology that can elicit prior
knowledge for explaining human driving behavior in specific
environments, and then construct a driving behavior model
based on a set of prior knowledge. In the real world, human
drivers often perform unintentional actions, and occasionally
they have no logical reason for their actions. In these cases, we
cannot elicit prior knowledge to explain them. We are forced
to construct a behavior model with an insufficient amount
of knowledge to reproduce driving behavior. To construct an
individual driving behavior model with insufficient knowledge, we
take the approach of using knowledge from others to complement
the lack of knowledge from oneself. To clarify that the behavior
model, which is filled out by knowledge from others, offers
driving behavior individuality, we experimentally confirm that
the driving behaviors reproduced by the hybrid model correlate
reasonably well with human behavior.

Index Terms—Multiagent simulation, modeling methodology,
traffic simulation, participatory modeling

I. INTRODUCTION

ANY STUDIES on Multiagent-based simulation

(MABS) have been done in various fields [1], [2], [3].
MABS yields multi-agent societies that well reproduce human
societies, and so are seen as an excellent tool for analyzing
the real world. The key technology to implement MABS is
agent modeling. This is because collective phenomena emerge
from the local behaviors of many agents; that is, the sim-
ulation result depends on each agent’s micro-level behavior.
Most existing studies, however, use simple or abstract agent
models [4], [5], [6]. In order to achieve realistic agent models,
it seems natural to learn from human behavior in the real
world. Our research focus is to develop a methodology for
generating agent models from human behavior.

Participatory modeling is a promising technology with
which to obtain individual behavior models based on actual
human behavior. Participatory modeling allows us to elicit
a human’s behavior as well as the reason for the behavior
in particular application domains. Such information can be
used as prior knowledge to explain a human’s individual
behavior. For a sequence of human behaviors, we can construct
an individual behavior model composed by a set of prior
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knowledge, each piece of which can explain one of the local
behaviors in the sequence.

The challenge presented in this paper is to use participatory
modeling technology to obtain a human-like behavior model
in the traffic domain. A human driver controls his/her car
based on his/her driving style. We want to construct a driver
agent model that can reproduce diverse driving styles. Trying
to achieve that with participatory modeling technology raises
difficulties when trying to explain a sequence of driving
behaviors. In the real world, a human driver occasionally
performs unintentional actions (i.e., actions with no logical
reason). Additionally, there are cases where the driver cannot
remember the reason for his/her actions. As a result, we cannot
obtain sufficient prior knowledge to explain his/her driving
behavior.

To permit a driver agent model to be created even though
the knowledge is insufficient, we take the approach of using
complimentary prior knowledge from other drivers. That is to
say, if it is impossible to explain a driver’s behavior using
only the knowledge elicited from the driver, the knowledge
acquired from other drivers is used to provide the explanation.
This approach allows us to acquire a driving behavior model
that is fleshed out (patched) by knowledge from others. In
order to know whether the individuality of a driver’s behavior
is effectively preserved by the patched behavior model or not,
we conduct an experiment on a driving behavior model to
confirm that it well reproduces the individuality of driving
behavior.

In section II, we first show some existing studies on agent
modeling, then describe the process of participatory driver
agent modeling methodology. In section III, we show how the
proposed methodology works, and what behavior models can
be constructed. In section IV, we introduce an investigation
of the quality of the acquired models based on quantitative
metrics. Finally, concluding remarks are given in section V.

II. DRIVER AGENT MODELING
A. Current Technologies and Limitations

In the multiagent research area, many researchers have
focused on multiagent-based traffic simulations. To date, how-
ever, agent modeling with the goal of reproducing human
driving behavior has not been the focus of most previous
works. Balmer et al. [ 7], for example, constructed a multiagent
traffic simulator where each agent iteratively revises his/her
preferences on the route to be travelled. In this work, the
agent model is considerably simplified since only route setting
decisions are made. Halle and Chaib-draa [8] proposed an
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agent architecture for realizing collaborative driving by a
convoy of cars. Their work, however, did not consider the
individuality of driving style. In contrast, Paruchuri et al. [9]
tried to reproduce a variety of driving styles. However, they did
not consider the realization of human-like driving, but simply
introduced three driving styles defined based on three fine-
tuning parameters.

Participatory technology has been used for multiagent-
based simulations. Sempé et al. [10] proposed how to acquire
information that could explain a subject’s behavior through
dialogue with the subject’s own agent during simulations.
Unlike our work, they did not show how to identify a subject’s
specific behavior and construct behavior models. Guyot et
al. [11] aimed to design interaction models by observing the
emergence of power-relations and coalitions during participa-
tory simulations. Their research goal is different from ours
which focuses on agents’ internal mechanism.

Reinforcement learning (RL) seems a promising technology
for obtaining driving behavior models [12], [13]. By agent
modeling with RL technologies, we may be able to obtain
a computational model to drive. But the acquired models
can just run human driving log, so that we cannot know the
individuality in driving style.

B. Farticipatory Driver Agent Modeling

1) Outline: During participatory driver agent modeling, we
construct driving behavior models from human driving data by
collaborating with the human subjects. Using the participatory
modeling technique allows us to construct behavior models
from not only our (modeler’s) knowledge, but the actual
behavior of the human subjects. The modeling process consists
of the following five steps.

1) Collect human driving log data from trials performed on
a 3D virtual driving simulator.

2) Together with domain experts, identify individual driv-

ing behaviors by the investigation of collected log data.

3) Collect prior knowledge constituting a driving behavior

model by interviewing the subjects of the driving simu-
lation

4) Select meaningful prior knowledge and represent it in

formal expression

5) Construct a driving behavior model that can explain

human subject’s actions based on hypothetical reason-
ing [14]

We detail each step in the remainder of this section.

2) Collecting Driving Log on 3D Virtual Driving Simu-
lator: In order to construct a driving behavior model, we
need realistic driving data from humans. In the real world,
however, it is hard to collect sufficient driving data in actual
traffic environments due to the difficulties of setting up an
experimental environment. Thus, we use a 3D virtual driving
simulator that has a lifelike cockpit and a wide screen that can
display a virtual environment (see Figure 1)!. Such simulations
are often used to train drivers, and so our simulator is expected
to yield realistic driving data. Figure 2 is one example of

I'This virtual driving simulator is located at Graduate School of Engineering
Division of Global Architecture, Osaka Univ., JAPAN

Fig. 1. 3D Virtual Driving Simulator used for Collecting Driving Log Data
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Fig. 2. An Example of a Chart made from Driving Log Data. Each graph (i),
(ii), (iii), and (iv) denotes Speed, Acceleration, the Usage of Accelerator, and
the Usage of Brake, respectively. Circles on the graph represent the subject’s
specific behaviors identified by traffic engineers.

a chart made from driving log data. As shown, we can get
information on transitions in running speed (the graph at the
top), acceleration (graph second from the top), and the usage
of accelerator/brake (graphs at the bottom).

3) Identifying individual behaviors with domain expert:
We investigated the collected driving log data to identify each
subject’s individual driving behavior. For the investigation, we
use the following data collected for each subject.

1) Mileage(km)

2) Speed(km/h)

3) Acceleration(m/s)

4) Usage of Accel.(%)

The mileage from the origin

The speed of subject’s car

The acceleration of subject’s car
The usage of accelerator, i.e., ac-
celerator pedal position®

We try to capture an individual’s behavior by investigating
his/her driving log data. In particular, the speed/acceleration
transitions provide a lot of useful data. The experiment shown
in Section III confirms that different drivers have different
driving styles, even in identical conditions. Therefore, the
sequence of each local driving behavior can be taken as
an expression of driver individuality. Figure 2 shows some

2In this paper, when the pedal is not depressed, the rate is 0%, and the rate
is 100% when the pedal is fully depressed.
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transitions on graph (ii) in the figure (marked by circles);
they represent the results of specific operations. Since, it was
difficult for us to accurately identify key transitions from the
log data, we elicited the help of domain experts (i.e., traffic
engineers).

4) Interview of Subjects: We interviewed the subjects after
they participated in the driving simulation. The purpose of
the interview was to gather information on their specific
operations, identified in the previous step, for generating prior
knowledge. We use screen shots of the simulation and charts
like Figure 2 in order to make it easy for the subjects to
remember the reasons for his/her actions in the simulation.

In the interview, we asked each subject about the following
four points for each specific operation.

1) Reason/motivation for the operation
Confirmation of the reason or motivation for the
operation
2) Target of subject’s gaze
Confirming what the subject really gazed at
3) Recognized target
Confirming what the subject recognized
4) Evaluation of the recognition
Confirming how the subject evaluated the result of
the recognition
Figure 2 shows some notes on several of the transitions.
For example, the notes at the center of the figure show the
following responses:

1) Getting ready for a curve

2) The road in front of me

3) The curve is close and I cannot see into the curve
4) The road forward is unclear

Our analyses of the interview log and charts yielded informa-
tion on the subjects’ operations under a range of conditions,
i.e., “sense-act” information. We use such information as prior
knowledge and represent it as driving rules, each of which
denotes a driving operation made under a certain condition.

5) Formal representation of collected knowledge: We first
cleaned up the collected prior knowledge (i.e., driving rules).
For example, in the real example shown in Section III, we
obtained knowledge such as “If I feel fine, I'll step on the
accelerator.” This kind of knowledge, which is related to
feeling, is not suitable for use for modeling because we cannot
observe the internal states of humans. Thus, we first eliminated
such knowledge. The knowledge remaining is represented
using formal expressions based on predicate logic. After a
discussion with traffic engineers, we fixed some predicates to
represent prior knowledge, see Table I.

These predicates are also used to formally describe the ob-
servations extracted from the driving log data. An observation
describes what the subject noticed, and how he/she operated
his/her car in the situation presented.

This formal description of prior knowledge and observations
allows us to use them in the next step of model construction.

6) Construction of Driving Behavior Models:

a) Formalizing the Problem: In this paper, we assume
that a subject decides his/her next operation based on the
surrounding environment as observed from his/her viewpoint.

Predicate Description
Straight(X) X is a straight road.
Curve(X) X is a curve.
Uphill(X) X is an uphill.
Downhill(X) X is a downhill.
O0n(X,Y) Y is driving on X.
InSight(X,Y) Y can see X.
OverDesiredSpeed(X) The speed of a car X exceeds the desired speed.
UnderDesiredSpeed(X) The speed of a car X is under the desired speed.
OverCurveSpeed (X, Y) The speed of a car Y is too high in a curve X.
SpeedUp(X) A car X is speeding up.
SlowDown(X) A car X is slowing down.
Accelerate(X) A car X is accelerating.
Decelerate(X) A car X is decelerating.

TABLE I
PREDICATES TO REPRESENT ACTIONS

We denote the environment observed by the subject as E; it
consists of conjunctions of literals about the environment; the
environment at time ¢ is tagged F;. The driving model M is a
set of prioritized driving rules (P, <), which is a set of driving
rules where < represents the priorities of each rule in P. P is
a subset of Rules which is the set of rules obtained from all
subjects. Therefore, each driving model may be consist of prior
knowledge obtained from several human subjects. < is a subset
of the Cartesian product, i.e. Rules X Rules. Each driving rule
in Rules is denoted as rule;(0 < i < j < |Rules|), so that
(rule;, rulej) €= is described as rule; < rule;.

In order to apply hypothetical reasoning [14] to the mod-
eling of driving behaviors, we define driving rules and an
operation selection mechanism as domain knowledge ¥. An
element of domain knowledge is indicated by 0 (0 < k <
|2|). We hypothesize which driving rules are employed by
the target subject (rule; € P), and which rules take priority
(rule; = rulej). A set of these hypotheses is indicated by
H. Additionally, we describe the subject’s behavior from the
beginning of the simulation on a 3D simulator, O, to the end
of the simulation, end, as observation G and the observation
at time t is denoted as G;.

The operation selection mechanism is defined as follows:

Definition 1 (Driving operation selection: 01)

(Frule;(rule; € P A rule; =

m&x{ruleMpplicable(rule, En}))

= Do(operation(rule;))
Here, Applicable and Do are pseudo-predicates meaning that
the condition part of a rule is satisfied, and that the subject
initiates an operation, respectively. Function operation returns
the operation initiated by the subject when he/she executes
rule;. o1 means a subject employs rule;, the rule that has the
highest priority among all applicable operations at E;.

Definition 2 (Continuation of operation: o3)

A subject can continue his/her current opera-
tion.

Definition 3 (Constraint: o3)

Vrule;, rulej(rule;, rule; € PA

(condition(rule;) = condition(rule;))

= (operation(rule;) = operation(rule;))
o3 means that P does not include driving rules that have
identical condition parts but different operations. Here, the
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function condition returns the precondition of its argument.
We define G and G bellow:

Definition 4 (Observation G)
G=(GoAN...NGt Ao NGend)

Definition 5 (Observation G;)
Gt = (Et = At)
Ay is the literal represented by predicate Do.

The observations, present in driving log data, are described
using the predicates shown in Table I. We use road structure,
driving speed, and acceleration pedal operation as observa-
tions. A typical description is as follows:

Example 1 (Description of observation)
Curve(Curvey) A InSight(Curvey, self)
A Uphill(Uphilly) A On(Uphilly, self)
A OverDesiredSpeed(self)
= Do(ReleaseAccel(self))

This observation means that the subject released the ac-
celerator when he/she sees Curve; (InSight), his/her car
is driving Uphill;(0n), the speed of car exceeds the desired
speed (OverDesiredSpeed), and he/she is decelerating
(ReleaseAccel).

b) Model Acquisition Process: We applied a modeling
method based on hypothetical reasoning [15] to acquire a
driving behavior model of each human subject. The method
should yield models that can explain G in association with
3 and H. As mentioned above, ¥ is the operation selection
mechanism and operation rules, and H indicates which driving
rule is employed by the subject, i.e. which rule has priority.

The major steps of the model acquisition algorithm are as
follows.

1) The driving model at time ¢ — 1, M = (P, <), is input.

2) If the target subject continues the same driving operation
as at time ¢ — 1, the algorithm just returns M.

3) If the subject initiates a new operation at time ¢, a driving
rule p, which is applicable to F; and can explain Ay,
is chosen from P. p is assigned higher priority than
all other rules applicable to E; in P (=X is updated to
=<); finally, M = (P, =’) is returned. The goal of the
algorithm is to obtain a minimal explanation. Therefore,
the algorithm first tries to find an applicable rule in the
current P to avoid adding another rule.

4) If there is no applicable driving rule in P, a driving rule
p, which is applicable to F, is chosen from Rules. p is
assigned higher priority than all other rules applicable
to F; in Rules (=X is updated to =<’); finally, M =
(P U{p}, =) is returned.

If PU{p} is inconsistent, the algorithm returns “fail”.
For model acquisition, explanation-based learning (EBL) [16]
is another potential technique. In EBL, an observation can
be explained by using domain knowledge and training data
without making a hypothesis. On the contrary, in hypothetical
reasoning, an observation can be explained by using domain
knowledge under a hypothesis and the hypothesis could be
considered as true iff it is consistent with the domain knowl-
edge. When we try to construct driving models, we do not
know which rules are used by human subjects and which rule
is prioritized. Thus, we are required to construct models based
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Fig. 3. Road Structure in 3D Driving Simulator
RuleID Description of a rule
ruleg; If a subject is driving a curve, he/she releases the accelerator.
ruleg2 If a subject is driving a straight, he/she steps the accelerator.
rulegs If a subject is driving uphill, he/she steps on the accelerator.
rulega If a subject is driving downhill, he/she releases the accelerator.
rulegs If a subject sees a curve ahead, he/she releases the accelerator.
rulegg If a subject sees a straight ahead, he/she steps the accelerator.
ruleor If a subject sees an uphill ahead, he/she steps on the accelerator.
rulegs If a subject sees a downhill ahead, he/she releases the accelerator.
rulegg If the speed exceeds the desired speed, a subject releases the
accelerator.
ruleig If a subject is driving under the desired speed, he/she steps on the
accelerator.

ruleqq If a vehicle slow down, he/she steps on the accelerator.
ruleiz If a vehicle speed up, he/she release the accelerator.

TABLE II
OBTAINED KNOWLEDGE FROM HUMAN SUBJECTS

on hypothetical reasoning with hypothesis, such as “rule; was
prioritized”, “this subject had rule;.

III. A REAL EXAMPLE OF DRIVER AGENT MODELING

We conducted an experiment to construct drvier agent
models based on the modeling methodlogy we mentioned
above. In this section, we show how the proposed methodology
works, and what models were constructed in the experiment.

A. Setting and Modeling Process

First, we describe the setting of the driving simulation used
to collect driving log data. In this experiment, we used an
11km virtual highway whose layout is shown in Figure 3.
For simplicity, in this experiment, each human subject drove
alone, so that we could elicit prior knowledge representing
just the driving operations. There were 36 subjects, each of
them had experience in using the 3D simulator. We could
successfully obtain prior knowledge (i.e., driving rules) from
all subjects through a collaboration with traffic engineers, but
some subjects provided only one or two rules. The set of
obtained prior knowledge is shown in Table II. Because the
experiment was held on a virtual highway with no other cars,
all subjects used just the accelerator. In a few cases, the subject
used the brake, but had no logical reason for doing so. Prior
knowledge indicated how the human subject might decide
to use the accelerator considering surrounding road structure,
current velocity, and own desired speed.

We then formally expressed the obtained prior knowledge
by using the predicates we defined to describe observations.
Example 2 shows a description of prior knowledge.
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Example 2 (Description of prior knowledge)

rules:

if Curve(z)AInSight(x,self) then ReleaseAccel(self)

ruler:

if Uphill(z) A InSight(x,self) then Accelerate(self)
For instance, rules means that if there is an upcoming
curve z (Curve(z)) and if the subject (“self”) sees the
curve z (InSight(x,self)), he/she releases the accelerator
(ReleaseAccel(self)). rule; means that if hill is to be
climbed x (Uphill(x)) and the subject sees that, he/she steps
on the accelerator (Accelerate(self)).

Finally, we used the obtained knowledge and observations
to construct driving behavior models using the algorithm
shown in II-B6b. We show here an example of the modeling
process using the rules and observation in Example 1 and 2.
This example shows how Do(ReleaseAccel(self)) is derived.
Here, we assume rulejs € P.

1) In order to derive Do(ReleaseAccel(self)), due to oy,
it is required to prove that action(rule;) = Release
Accel(self), rule; € P, and that rule; = m&x{ruld

Applicable(rule, Ey_1)} are true.

2) Because the consequences of rules is
Initiate(ReleaseAccel(self)), they validate action
(rule;) = ReleaseAccel(self).

3) Substitute rules for rule;

a) Choose an assumption, rules; € P, from H to
prove rules € P is true.

b) Choose an assumption, ruler
rules from H to prove rules
mgx{rule|Applicable(rule, E;_1)} is true.

¢) hi_1 = {{ruleya, rules}, {{rule; < rules}}} is
acquired.

I IA

This process is iterated until G, 4 can be explained; the result
is a driving model.

B. Acquired Driving Behavior Models

In the experiment, we could construct driving behavior mod-
els for all subjects. In this section, we show some examples
of the driving behavior models so acquired. Table III shows
a set of driving rules and their priorities. Figure 4 shows
transitions in running speed and acceleration of the subjects
and their corresponding driver agents. In Figure 4, the vertical
axis and horizontal axis represent speed (km/h) and mileage
(km), respectively. The bold blue line and bold green line plot
subject’s running speed and acceleration, respectively. The thin
red line and thin orange line represent driver agent’s running
speed and acceleration, respectively.

Case 1 for S;: The driving behavior model of subject
S1 consists of 6 driving rules and the relationships defining
their priorities. The road section of 1km - 7km is a gentle
ascending slope with some curves, as shown in Figure 3. Sy
drove under his/her desired speed (120km/h) in this zone (see
Figure 4(A-1)). S1’s behavior model can reproduce his/her
driving log by the application of three rules, rulegs, rulegz,
and rulejg. The running speed is increased by these rules.
After the 7km point, the road curves downhill. Because S7’s

ID Driving behavior model

S1 P = {ruleo1, ruleos, rulegs, rulegg, ruleio, rulei1 }

<= {ruleig =X rulegi, rulegr = rulegs,ruleip < rulegs,
rulegs = ruleio, rulepr =< ruleio,rulepr = ruleps,
ruleps = ruleps, rulegs =< ruleoi, rulegs =< rulepg,
rulepg X ruleps, rulepg =< rulegs, rulegr =< rulei,
rulegs =X ruleir, rulegg = ruleir}

So P = {ruleo1, ruleoz, ruleos, rulegs, rulegs, rulepg, ruleio,
ruleir }

<= {ruleg1 =X rulegs, rulegg = rulegy,rulepy =X ruleys,
rulepgg = ruleir, ruleir =< rulegg, rulegg = rulepz,
rulepe =X rulepg, rulegg =< ruleps, rulegs =< rulepg,
ruleir =X rulegs,rulegs = ruleir}

S3 P = {ruleo1, rulegz, ruleos, rulegs, rulegs, rulegs, ruleir }

<= {ruleps = rulegz,ruler1 = ruleps,ruleps < ruleis,
ruleps = rulegr, ruleir =< ruleor,rulegr = ruleis,
ruleps = rulegs, rulepr = rulegs, rulei; = rulepg,
rulepe X rulepi, ruleps =< ruleps, rulegr =< ruleps,
ruleps =X ruleps, rulegs =< ruleoi, rulegs =< rulej,
rulegs = ruleir, ruleir =< rulegs, rulegs = rulepg,
rulege =X rulegs, rulegs = Tulegs, rulegs < rulegs }

TABLE III
EXAMPLES OF ACQUIRED DRIVING BEHAVIOR MODELS

model does not include a rule to release the accelerator, at
first, the running speed is continuously increased. However,
once the speed exceeds the desired speed, rulegg is fired, and
the accelerator pedal is released. If the speed becomes too
slow, this model can recover because rulei;, which is used to
speed-up when car speed becomes too slow, is prioritized over
rulegy and rulegs which are used to release the accelerator
in a curve.

Case 2 for S5: The driving behavior model of subject
Sy includes 8 driving rules. In Figure 4 (A-1) and (A-2), S3’s
behavior looks similar to .S . The difference is apparent around
7km - 9km region. Sy drove at around 100km/h while Sy
exceeded 100km/h. So’s model can reproduce this difference
in driving behavior. It includes ruley, representing “if the
subject sees a downhill ahead, he/she releases the accelerator.”
Therefore, S2’s model lowers the speed. This is one example
of realizing individuality in driving style.

Case 3 for S3: S3 was a driver whose driving style was
hard to explain and reproduce. The frequency of acceleration
is relatively high. This is because he/she seems keen to
maintain his/her desired speed exactly (100km/h). As shown
in Figure 4 (A-3), Ss speeds up little by little to just over
100km/h. The model of S5 can reproduce this driving style by
including both ruleig (“If the car speed up, he/she release the
accelerator”) and rulejo (“If the subject is driving under the
desired speed, he/she steps on the accelerator”). A comparison
of the transitions in acceleration makes it clear that S3’s model
yields behavior different from those of the other two models.

IV. EVALUATION AND DISCUSSION

The previous section claimed that our behavior models can
reasonably reproduce individual behaviors. In this section,
we investigate the quality of the acquired behavior models
through quantitative metrics. First, we evaluate whether the
acquired models can well reproduce the transitions in running
speed. To do that, we calculated the correlation value between
the running speed of the human subject and that of his/her
behavior model. Such correlation value is a time-tested and
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Fig. 4. Transitions in running speed and acceleration of human subjects and corresponding driver agent

an academically accepted index to quantitatively measure the
performance of simulations, especially traffic simulations [17].
Table IV(a) shows correlation values for the running speed
of human subjects S;, Sz, and S3 and their agents. Bold
values in the table shows the correlation value between human
subjects’ log data and the corresponding agents’ log data.
This data confirms that the first two models for S; and
So reasonably reproduce the transitions in running speed.
Although the correlation value of the model for S5 is not as
high, it still exceeds 0.60. The average correlation value for
all human subjects was 0.72. While this is not an outstanding
value, we think the quality of the acquired behavior models
is acceptable given that the behavior models were created
using intermingled knowledge. Additionally, from the data
shown in this table, we can acquire models that can reproduce
individual driving styles. For example, the model for S; is
best at reproducing subject S;’s driving style, it does not
well reproduce those of others. The correlation values between
S1’s model and S5 (S3) are 0.62 and 0.21. In particular,
as we can sense from Figure 4(A), the model for S3 is
highly uncorrelated. The correlation values for S; and Sy are
0.05 and 0.1, respectively. Accordingly, we have succeeded in
acquiring individual driving behavior models, each of which
can reproduce the characteristic driving style of a different
human subject.

The above evaluation assessed the agreement of transitions
in running speed, but the actual speeds are equally important.
Thus, we assessed whether the speeds were similar or not.
Figure 4 (B) shows the distribution of running speeds. This
figure plots the number of opportunities to drive at each speed.
In this figure, the blue bar is for the human subjects and the
red bar is the result of the behavior models. In Table IV(b),

Range of Running Speed [km/h]
(B-2) (B-3)

| | | 5, | S, | Ss |
[ | [[ Human | Agent | Human [ Agent | Human | Agent |

S1 Human 1 * * * * *

Agent 0.95 1 * * * *

Sa Human 0.66 0.62 1 * * *

Agent 0.90 0.87 0.72 1 * *

Ss Human 0.30 0.21 0.59 0.34 1 *

Agent 0.05 -0.03 0.1 -0.03 0.61 1

(a) Correlation value for the running speed of humans and agents

[[ID [ Entity | Average | Standard Dev. |
Sy Human 100.9 10.6
Agent 95.8 9.1
So Human 91.6 7.18
Agent 86.8 9.5
S3 Human 102.9 5.32
Agent 100.2 8.22

(b) Average and Standard deviation of the running speed

TABLE IV
COMPARISON BETWEEN HUMAN SUBJECTS’ LOG DATA AND AGENTS’ LOG
DATA

we also plot the average and the standard deviation of the
running speed of three examples. We can confirm that there
is no crucial misfit in the standard deviation for all cases,
so that the acquired models can well reproduce driving at
the approximate speed with human subjects. In particular,
for S, both of transitions in running speed and value of
the speed are approximate. Also, for S3, both human subject
and his/her behavior model can drive at the approximate
running speed and the characteristic driving style using the
accelerator at highly frequent rates. As a result, we can acquire
driving behavior models which can reasonably well reproduce
individual driving styles of human subjects.
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V. CONCLUSION

The agent modeling methodology proposed in this paper
represents another direction in agent modeling for realizing
human-like individual agent behavior. Our method does not
rely on the modeler’s knowledge or ability, but learns from ac-
tual human responses by applying the participatory modeling
technique. We can explicitly obtain information on humans’
characteristic behavior, i.e., prior knowledge, through the
modeling process, and then construct diverse and individual
agent behavior models from the obtained knowledge.

We focused on the traffic domain and encountered several
difficulties in constructing agent models due to the lack of
prior knowledge. Driving demonstrates many actions whose
motivation is hard to explain. If we want a lot of detailed
knowledge, we have to spend a lot of time interviewing
many human subjects. This represents a bottleneck in knowl-
edge acquisition for agent modeling. In this paper, we took
the approach of using complimentary knowledge from other
humans in the same situation. As shown in the evaluation
conducted here, we can obtain reasonably well correlated
driving behavior from agents. Although we will continue to
enhance our methodology, our approach to overcome the lack
of knowledge for agent modeling represent a highly attractive
first step.

In summary, the contributions of this paper are to (1)
propose a novel agent modeling methodology for realizing
individuality in agent behavior, (2) introduce an approach that
can offset knowledge shortfalls for agent modeling, and (3)
provide a hint for constructing driver agents for realistic traffic
simulations.
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